Information to Memorize: Circular Motion

Circular motion

An object moving at constant speed v in a circle of radius r has an acceleration of magnitude v^2/r , directed toward the center of the circle.

Definitions:

- Period (T) Time is takes for one revolution.
- Frequency (f) Number of revolutions per second
- Angular Frequency Angular Frequency measures how much the angle changes per second.
- RPM Revolutions per minute, a common way we describe frequency
- The Relationship between Period and Frequency Period is the inverse of frequency (T = 1/f)
- Speed Magnitude of velocity (just the number)
- Velocity Distance/time, for circular motion this becomes circumference/period $(2\pi r/T)$
- Centripetal Force (F_c) Force that points toward the center of the circle, it keeps the object in uniform circular motion. Its formula is $F_c = mv^2/r$

Information to Memorize: Gravitation

Gravitation

All massive objects attract each other with a gravitational force.

The gravitational force F_G of one object on another is given by $F_G = G \frac{M_1 M_2}{d^2}$:

- M is the mass of an object
- d is the distance between the centers of the two objects
- G is the universal gravitation constant, 6.7 x 10^{-11} N·m²/kg²

The gravitational field g near an object of mass M is given by $g = G \frac{M}{d^2}$, where d represents the distance from the object's center to anywhere you're considering.

The weight of an object near a planet is given by mg, where g is the gravitational field due to the planet at the object's location.

The gravitational field near a planet is always equal to the free-fall acceleration.

Gravitational mass is measured by measuring an object's weight using $F_g = weight = mg$

Inertial mass is measured by measuring the net force on an object, measuring the object's acceleration, and using $F_{\text{net}} = ma$.

In all experiments ever performed, gravitational mass is equal to inertial mass.